摘 要:同仁均知,訓(xùn)練F2N2(Feed Forward Neural Network:前饋神經(jīng)網(wǎng)絡(luò))的方法雖然很多,但是至今未能徹底解決“收斂不迅速”和“收斂不穩(wěn)健”這兩大難題,從而影響了F2N2的應(yīng)用。針對(duì)此問(wèn)題,文章研究了一種訓(xùn)練&應(yīng)用F2N2的新方法,該方法靈活地將BPNN(Back Propagation Neural Network:反向傳播神經(jīng)網(wǎng)絡(luò))關(guān)鍵訓(xùn)練算法和分層優(yōu)化算法親和、協(xié)調(diào)的自然結(jié)合,并且對(duì)每層的(Weight:“權(quán)”)訓(xùn)練獨(dú)立進(jìn)行,精心創(chuàng)建了用級(jí)數(shù)精確表達(dá)的F2N2目標(biāo)函數(shù),不僅能將優(yōu)化每層的問(wèn)題簡(jiǎn)化為線性問(wèn)題
[登陸后可查看全文]